
CS3551 Class Project Proposal 
 

Mike Boby and Brad Whitehead 
19 February 2020 
Version 2.1 
 
Project Title​ - Using Unikernels to Enhance the Attack-Resistance of Spire, a 
Network-Attack-Resilient Intrusion-Tolerant SCADA for the Power Grid 
 
Project Goal​ - Convert the traditional ELF executables of Spire 1.2 [2] to self-contained 
unikernels and demonstrate that 1) they continue to operate correctly and 2) they exhibit the 
increased performance and reduced resource utilization characteristics of unikernel technology. 
Investigate the combined approach of using unikernel technology to reduce attack surfaces, and 
the Multicompiler to create a “moving target defense” while reducing “return-oriented 
programming (ROP)” vulnerabilities.  If possible, demonstrate the increased compromise 
resistance of the unikernel(/Multicompiler) Spire executables.  
 
Why: 
 
Considerable thought and effort has been applied to the problem of making the executables 
used in the Spire system resistant to attack and successful compromise.  This includes the use 
of the MultiCompiler to create polymorphic executable versions of the source code.  While this is 
an excellent stand-alone approach, we believe that security and compromise resistance could 
be further enhanced by discarding the use of an operating system and converting the 
executables into unikernels, isolated from other applications through hardware-enforced virtual 
machine technology.  Not only will this increase the compromise resistance, it will significantly 
enhance performance in the areas of initialization (“bootup”) and throughput, as well as 
decreasing resource utilization (memory).  Unikernels are highly resistant to most attack vectors, 
with the exception of ROP exploits.  While unikernels are less susceptible to ROP attacks 
because of the increased difficulty of initially compromising the executable, if a beachhead is 
established the unikernel provides no more defense against ROP than a conventional 
executable. If it is possible to use the Multicompiler in conjunction with a unikernel, the ROP 
vulnerability can be greatly reduced, closing the remaining gap in unikernel security[1].  
 
Prior Research: 
 
While there are a number of publications on the unikernel concept and its applicability to 
security, since the seminal paper in 2013 [3], we were only able to find one paper that 
specifically addressed the use of unikernels in a SCADA environment [4].  In this paper, 
unikernels were selected not for their security properties but rather for their fast instantiation and 
low memory requirements.  There are two other papers that mention the possibility of using 
unikernels in industrial networks [5,6], but both authors felt that the unikernel orchestration 
systems were not mature enough.  Interestingly enough, both papers chose to use containers 



instead.  While container orchestration systems such as kubernetes and mesos may be more 
mature,  containers themselves have a number of well known and documented security issues. 
We believe that unikernels are sufficiently mature and that the minimal orchestration required for 
Spire is easily achievable.  
 
Anticipated Project Steps: 
 

1) Familiarization with the Spire system by obtaining the required external dependencies, 
compiling the code, and running the author-supplied benchmarks 
 

2) Investigate the compatibility of unikernels and the Multicompiler.  Consider the building 
order; should Multicompiler output be linked into unikernels, or should the Spire and 
unikernel source code be compiled by the Multicompiler?  
 

3) Research available unikernel libraries, build systems, orchestration systems, and virtual 
machines, and select the most appropriate ones based on observations from Steps #1 
and #2 
 

4) Select an appropriate paper on unikernels and security to present in class 
 

5) Identify evaluation hardware (either several “bare metal” servers or nested virtualization 
on one or more virtual servers) 
 

6) Compile the Spire executables into unikernels, using the libraries and build system 
identified in Step #3 
 

7) Iteratively, make necessary code changes required to accomplish Step #4 
 

8) Test and benchmark Spires unikernels using the included benchmark suite and the test 
configuration in the “Read Me” file 
 

9) Investigate the compromise resistance of the Spire unikernels.  This step is dependent 
on the availability of any existing compromise/penetration tests or test tools, or the 
availability of the University’s CyberSecurity Club  
 

10) Document the project 
 

11) Prepare and deliver project presentation for class 
 
Synergy​ - It is expected that this project will collaborate with another class project involving 
network intrusion detection for the Spines network.  We anticipated this collaboration will involve 
the exchange of ideas and information (joint “brainstorming”), shared hardware, and joint 
participation in vulnerability/penetration testing. 



References: 
 
[1] Andrei Homescu, Steven Neisius, Per Larsen, Stefan Brunthaler, and Michael Franz, 
Profile-guided Automated Software Diversity. International Symposium on Code Generation and 
Optimization 2013, 
https://pdfs.semanticscholar.org/bdea/c542d3bdb9fd3666c2cef04ef4b20be14830.pdf​ (retrieved 
February 19, 220) 
 
[2] ​Babay, A., Tantillo, T., Aron, T., Platania, M., & Amir, Y. (2018). Network-Attack-Resilient 
Intrusion-Tolerant SCADA for the Power Grid. ​2018 48th Annual IEEE/IFIP International 
Conference on Dependable Systems and Networks (DSN)​, 255-266. 
 
[3] ​Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj Singh, 
Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft. 2013. Unikernels: library 
operating systems for the cloud. SIGARCH Comput. Archit. News 41, 1 (March 2013), 461–472. 
DOI:https://doi.org/10.1145/2490301.2451167 
 
[4] ​Sakic E. et al. (2018) VirtuWind – An SDN- and NFV-Based Architecture for Softwarized 
Industrial Networks. In: German R., Hielscher KS., Krieger U. (eds) Measurement, Modelling 
and Evaluation of Computing Systems. MMB 2018. Lecture Notes in Computer Science, vol 
10740. Springer, Cham 
 
[5] Ahmed Ismail and Wolfgang Kastner, Vertical Integration in Industrial Enterprises and 
Distributed Middleware, Int. J. Internet Protocol Technology, Vol. 9, Nos. 2/3, 2016 
 
[6] Spyridon V. Gogouvitis, Harald Mueller, Sreenath Premnadh, Andreas Seitz, Bernd Bruegge, 
Seamless computing in industrial systems using container orchestration, Future Generation 
Computer Systems, 2018, ISSN 0167-739X, https://doi.org/10.1016/j.future.2018.07.033. 
  

https://pdfs.semanticscholar.org/bdea/c542d3bdb9fd3666c2cef04ef4b20be14830.pdf

